0=(x^2-6x)-50(x^2-6x)-275

Simple and best practice solution for 0=(x^2-6x)-50(x^2-6x)-275 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(x^2-6x)-50(x^2-6x)-275 equation:



0=(x^2-6x)-50(x^2-6x)-275
We move all terms to the left:
0-((x^2-6x)-50(x^2-6x)-275)=0
We add all the numbers together, and all the variables
-((x^2-6x)-50(x^2-6x)-275)=0
We calculate terms in parentheses: -((x^2-6x)-50(x^2-6x)-275), so:
(x^2-6x)-50(x^2-6x)-275
We multiply parentheses
-50x^2+(x^2-6x)+300x-275
We get rid of parentheses
-50x^2+x^2-6x+300x-275
We add all the numbers together, and all the variables
-49x^2+294x-275
Back to the equation:
-(-49x^2+294x-275)
We get rid of parentheses
49x^2-294x+275=0
a = 49; b = -294; c = +275;
Δ = b2-4ac
Δ = -2942-4·49·275
Δ = 32536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32536}=\sqrt{196*166}=\sqrt{196}*\sqrt{166}=14\sqrt{166}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-294)-14\sqrt{166}}{2*49}=\frac{294-14\sqrt{166}}{98} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-294)+14\sqrt{166}}{2*49}=\frac{294+14\sqrt{166}}{98} $

See similar equations:

| -4/5d=2/9 | | 8-6x-6x+9x+27=11 | | (X+42)+y=180 | | 4.6(x-2)+1.5(2x-3)=4.9 | | x^2-16x=13 | | 6r=–48 | | 3z/8+8=9 | | 2/5n+6=12 | | |-4n|=16 | | 16=x/20x= | | x+0.1x=1097500 | | 2(2+8x)+2x=-122 | | -252=-6-6(8p+1) | | 28y+8=25 | | 5/12+2/3x-15/4x=-5/2x+1 | | 4x2=7(4x-7) | | 1/9^(5x+1/2)=27^(3x-2) | | 4(k+7)-(3k+4)=-6 | | 4(x-2)+2x=2(x+6)+4x | | 16x2+40x+25=0 | | 2(x-2)+2x=2(x+6)+4x | | 9x2+7x=0 | | 12+7(11-9x)=3-20x | | 4(k+7)-(3k+4)=6 | | 6.4+2.1(6m-2)=8.5 | | 21x-3=13x+1 | | 2n+112=180 | | 2(x-4)=5(4-2)+4x | | 4=-4x^2+4x | | -29=6+2(h-5) | | 2z+40+3z-20=180 | | 2z=40=3z-20=180 |

Equations solver categories